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The Lolium genus encompasses many species that colonize a variety of disturbed
and non-disturbed environments. Lolium perenne L. spp. perenne, L. perenne L.
spp. multiflorum, and L. rigidum are of particular interest to weed scientists because
of their ability to thrive in agricultural and non-agricultural areas. Herbicides are the
main tool to control these weeds; however, Lolium spp. populations have evolved
multiple- and cross-resistance to at least 14 herbicide mechanisms of action in
more than 21 countries, with reports of multiple herbicide resistance to at least
seven mechanisms of action in a single population. In this review, we summarize
what is currently known about non-target-site resistance in Lolium spp. to acetyl
CoA carboxylase, acetohydroxyacid synthase, microtubule assembly, photosystem II,
5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, very-long chain
fatty acids, and photosystem I inhibitors. We suggest research topics that need to be
addressed, as well as strategies to further our knowledge and uncover the mechanisms
of non-target-site resistance in Lolium spp.

Keywords: altered herbicide translocation, herbicide metabolism, multiple-herbicide resistance, cross-herbicide
resistance, ryegrass, Lolium rigidum Gaud, Lolium multiflorum (Lam.), Lolium perenne (L.)

INTRODUCTION

The Lolium genus contains many species of economic importance. L. perenne L. ssp. perenne
(L. perenne), L. perenne L. spp. multiflorum (L. multiflorum), and L. rigidum are of particular
relevance due to their widespread presence globally. These three species (hereinafter referred
collectively to as Lolium spp.) are diploid (2n = 2x = 14), obligate outcrossing, and interfertile grass
species that are widely planted for cover crop, turf, and pasture. These species are also considered
weeds of agricultural and non-agricultural areas, and exhibit a distinctive ability to rapidly adapt to
different environments.

Weed control is one of the most important components of cropping systems that results in
significant yield and financial loss to growers if not properly performed. This scenario is exacerbated
by the evolution of herbicide resistant weed populations, with 514 unique cases reported globally
(Heap, 2020). Because of the overreliance on herbicides as the main weed management tool,
resistance to multiple herbicide families within a single weed population is often documented (Neve
et al., 2004). Multiple resistance represents a challenge to broad crop acreage production systems
that depend on chemical weed management because of the lack of new herbicide molecules being
marketed and the additional costs associated with non-chemical control methods.
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Herbicide resistance mechanisms in weeds are typically
classified in two categories: (a) modifications in the herbicide
target enzyme (target-site resistance; TSR) and (b) mechanisms
not involving the target enzyme (non-target-site resistance;
NTSR). TSR is typically conferred by single major-effect alleles,
whereas NTSR are believed to be conferred by multiple small-
effect alleles (Jasieniuk et al., 1996; Délye, 2013), although this is
not necessarily always the case (Yu et al., 2009b).

Physiological and biochemical alterations have been observed
in weeds with NTSR, such as reduced herbicide absorption
and translocation (Koger and Reddy, 2005), enhanced herbicide
metabolism (Hall et al., 1997), and herbicide sequestration
to the vacuole (Ge et al., 2010). However, the underlying
physiological, biochemical, and genetic alterations conferring
herbicide resistance is poorly understood.

Herbicide resistance in Lolium spp. populations has been
widely documented. There are at least 125 reports of herbicide
resistance in this genus to date, where multiple- and cross-
resistance represent approximately 40% of the reports (Heap,
2020). In some regions of the world where environmental
conditions for Lolium spp. development are ideal and there is an
overreliance on herbicides as the main weed management tool,
proportion of populations with multiple- and cross-resistance
may be as high as 61% (Bobadilla, 2019). Herbicide resistance in
Lolium spp. has been reported to 14 mechanisms of action, with
an example of one population of L. rigidum from Australia with
evolved resistance to seven mechanisms of action (HRAC/WSSA
numbers 1, 2, 3, 8, 15, 13, and 23) (Burnet et al., 1994). Lolium
spp. populations have evolved a variety of resistance mechanisms,
including enhanced herbicide metabolism, reduced herbicide
absorption and translocation, and protection-based resistance.
Therefore, comprehensive reviews on the mechanisms of NTSR
in Lolium spp. are needed.

In this article, we first provide an overview of NTSR
mechanisms in weeds, with focus on grass species. We then
review seminal and recent studies on NTSR in Lolium spp. It
was not our goal to detail every single case of suggested NTSR
in Lolium spp. Rather, we focused our efforts to compile the most
relevant studies on NTSR in Lolium spp., what is known about
the resistance mechanisms, and provide suggestions on how we
can further our understanding of NTSR.

NTSR MECHANISMS IN WEEDS

Reduced Herbicide Absorption
Upon herbicide application, herbicide droplets must land
on the leaf surfaces and overcome a number of barriers
before cellular uptake. This passive process largely depends
on leaf surface characteristics, herbicide chemical properties,
and their interactions. Is this review, we distinguish herbicide
absorption from cellular uptake, where the former is the
process of overcoming the physical barrier of leaves (i.e.,
cuticle) before the herbicide reaches the apoplast, and the
latter is the movement of herbicide from the apoplast into
plant cells. Herbicide resistant populations may exhibit reduced
herbicide absorption, which is characterized by a reduction

in the penetration through the cuticle before reaching the
epidermis (Figure 1), whereas cell walls do not pose a
considerable resistance to cellular uptake (Sterling, 1994).
Reduced absorption is not a common NTSR mechanism, but
has been documented in both eudicots and monocots to the
herbicide groups synthetic auxins and 5-enolpyruvylshikimate-
3-phosphate synthase (EPSPS) inhibitors, resulting in low
resistance levels (Kohler et al., 2004; De Carvalho et al., 2012).

Reduced Translocation and Vacuolar
Sequestration
Most herbicides must translocate from their absorption site in
order to control weeds. Therefore, alterations of translocation
patterns can diminish herbicide efficacy (Figure 2). Herbicide
resistance due to reduced translocation has been documented
in grass weed species, such as Lolium spp. and Chloris elata
(Wakelin et al., 2004; Yu et al., 2007, 2009a; Bostamam et al.,
2012; González-Torralva et al., 2012; Brunharo et al., 2016).
The underlying genetic and physiological basis of this NTSR
mechanism remains poorly understood (Yuan et al., 2007;
Ge et al., 2010, 2014).

Plant vacuoles are organelles that have central roles in the cell
homeostasis, are involved in osmotic adjustment, are reservoirs
for ions and metabolites, and storage of xenobiotics (Marty,
1999). Studies have shown that transporters such as ATP-binding
cassettes (ABC) are possibly involved in herbicide movement into
the vacuoles (Nol et al., 2012; Ge et al., 2014; Tani et al., 2015).
Because many herbicides must reach a target site localized within
specific organelles, the vacuolar sequestration may prevent the
herbicides from reaching the target site, as well as symplastic
movement of the herbicide molecules.

Reduced herbicide translocation as a NTSR mechanism
varies with environmental conditions, in particular temperature.
Studies have shown that low temperature regimes can reduce the
resistance levels by affecting the kinetics of vacuole sequestration
(Devine et al., 1983; Vila-Aiub et al., 2005; Shaner, 2009).
A paraquat-resistant L. multiflorum biotype from California,
for instance, exhibited a GR50 (herbicide dose required to
reduce plant biomass by 50%) 21 times greater when grown
at 30/24◦C than at 16/10◦C. This population also exhibited
enhanced protection against reactive oxygen species (ROS)
(Brunharo and Hanson, 2019).

Herbicide Metabolism
Herbicide metabolism refers to the degradation of herbicide
molecules by endogenous plant enzymes. In some instances,
this type of NTSR is non-specific, when a single enzyme
may inactivate one or more herbicide within the same or
different chemical classes (Iwakami et al., 2014b; Yu and
Powles, 2014). Many aspects of the herbicide detoxification
process are still unknown; however, key enzymes have been
identified. Metabolism-based herbicide resistance occurs due to
the increased activity of enzymes such as cytochrome P450’s
(Vila-Aiub et al., 2005; Yun et al., 2005; Busi et al., 2011;
Iwakami et al., 2014a), glutathione S-transferases (GST’s) (Reade
et al., 2004; Cummins et al., 2011; Chronopoulou et al., 2017;
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FIGURE 1 | Herbicide absorption in Lolium spp. Herbicide molecules must overcome the cuticle and epidermis to reach the apoplast before cellular uptake. X
represents a halt in the herbicide absorption and the red arrow represents the pathway to the mesophyll that the herbicide molecules would normally have without a
reduction in absorption.

FIGURE 2 | Reduced herbicide translocation due to vacuolar sequestration.
After herbicide cellular uptake, herbicide molecules must reach the target site.
Tonoplast-bound transporters are believed to be involved in the vacuolar
sequestration of herbicides in resistant Lolium spp. populations, preventing
the herbicide from inhibiting its target enzyme. Transporters are also located in
the plasma membrane for apoplast sequestration.

Dücker et al., 2019), ABC transporters (Rea et al., 1998; Yuan
et al., 2007; Tani et al., 2015), and glucosyltransferases (GT)
(Cotterman and Saari, 1992; Yuan et al., 2007; Powles and Yu,
2010). The genetic mechanisms of the altered enzyme activity
is not fully understood. Several hypothesis, however, may be
inferred: (i) genetic modifications within the genes that encode
metabolizing enzymes are involved, enhancing their activity;

(ii) genetic modifications outside of the genes (e.g., in the
promoter region or intragenic regions) enhance gene expression
and, consequently, number of enzymes available to degrade
herbicides; (iii) epigenetic changes occurred due to previous
stressors (e.g., low rates of herbicides) that altered the epigenome,
enhancing the expression of genes that encode metabolizing
enzymes; (iv) and post-translational modifications of proteins
enhance enzyme activity.

Herbicide metabolism can be divided into three phases
(Figure 3). The process starts after herbicide cellular uptake.
Hydrophobic herbicide molecules are oxidized to a more
hydrophilic metabolite, generally by P450’s (e.g., hydrolysis,
oxidation, etc.; Phase I). Once the herbicide molecule is more
hydrophilic, a conjugation reaction of the herbicide molecule
may take place, and the herbicidal activity and hydrophobicity
are further reduced (Phase II). Herbicides that already possess
hydrophilic properties may be directly subjected to Phase II.
Lastly, transport enzymes may recognize conjugated herbicide
molecules before storage into vacuoles and cell walls (Phase III)
(Yuan et al., 2007; Délye, 2013; Yu and Powles, 2014; Jugulam and
Shyam, 2019). Some researchers also recognize a Phase IV of the
herbicide metabolism process, where stored molecules are later
utilized for plant metabolism (Rosinger et al., 2012).

Cytochrome P450’s are oxidoreductase enzymes that catalyze
the hydroxylation, oxidation, and reduction, among other
reactions, of substances in many organisms and are known to
play a significant role in protecting plants from abiotic and
biotic stresses (Mizutani and Sato, 2011). Plants have over
40 different families of cytochrome P450’s and are divided
into four categories according to their primary function. P450
gene sequences occupy approximately 1% of the plant genome,
reflecting their importance in plant defense and other functions
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FIGURE 3 | Herbicide metabolism in Lolium spp. An herbicide may be
metabolized in three distinct processes, which typically occur in consecutive
order. (A) Initially, the herbicide is subjected to a redox reaction to increase its
hydrophilicity (Phase I). This metabolized herbicide may now be subjected to
further processing in Phase II (e.g., conjugation). Metabolism may be
concluded with the storage of metabolized compounds (Phase III). (B) The
herbicidal activity decreases with the consecutive processing of herbicides.

such as synthesis and catabolism of plant hormones (Nelson and
Werck-Reichhart, 2011; Mizutani, 2012; Pandian et al., 2020).

According to Guengerich (2018) and Pandian et al. (2020),
P450 herbicide detoxification is known to happen in five steps:
the first step consists in the herbicide binding to the heme group.
In the second step, the substrate binding induces the electron
transfer from NADPH by P450 reductase; the third step consists
in oxygen binding to the ferrous cytochrome forming a complex;
in the fourth step, the P450 reductase will release another set of
electrons to the ferrous cytochrome-dioxygen complex forming a
short lived “peroxo” complex that is rapidly protonated forming
a water and an iron–oxo complex; the last step consists on the
complex binding to the organic herbicide molecules forming an
oxidized product.

Many studies that reported enhanced herbicide metabolism as
the resistance mechanism did so by indirect means. Typically,
a P450 inhibitor is applied either before or with the herbicide
being tested, with the expectation that the P450 inhibitors would
reverse the resistance phenotype. For instance, Christopher
et al. (1994) pre-treated chlorsulfuron-resistant L. rigidum with
malathion (a P450 inhibitor) and observed that the resistant
population responded similarly to the susceptible. More recently,
cytochrome P450s were identified to confer NTSR resistance
in Lolium spp. populations from Argentina after the authors
pre-treated plants with malathion, 1-aminobenzotriazole, and

piperonyl butoxide. P450 inhibitors are a widely used approach
to identify the role of P450s in herbicide resistance (Busi et al.,
2017; Zhang et al., 2017; Yanniccari et al., 2020).

The enzyme super-family of GSTs is also involved in herbicide
detoxification in plants. In maize, for instance, GST’s represent
more than 1% of soluble proteins in leaves (Edwards et al.,
2000). GST’s catalyze the conjugation of many hydrophobic
and electrophilic substrates with the tripeptide glutathione
(Edwards et al., 2000). GST’s are likely to be involved in the
compartmentalization of herbicides by conjugating glutathione
with herbicide molecules and facilitating the recognition of
glutathione transporters making them potential participants in
reduced translocation-based resistance (Reade et al., 2004).

The ABC superfamily is another large group of proteins that
is responsible to mediate a wide range of transport functions
in plants (Theodoulou, 2000). ABC transporters can play a role
in the transport and movement of many compounds such as
peptides, sugars, lipids, heavy metal chelates, polysaccharides,
alkaloids, steroids, inorganic acids, and glutathione conjugates;
these transporters can be highly specific and able to transport
a large variety of compounds (Higgins, 1992). Research has
shown that ABC transporters may actively transport and
compartmentalize herbicide conjugates and metabolites (Powles
and Yu, 2010; Gaines et al., 2020). ABC transporters have
been hypothesized to be involved in the glyphosate resistance
mechanism in Lolium spp. (Ge et al., 2012).

Glycosylation mediated by GT’s may alleviate stresses caused
by xenobiotics in plants (Bowles et al., 2005). In grasses, GT’s are
known to be responsible for their tolerance to synthetic auxins via
glycosylation (Devine et al., 1993). In many Lolium spp. studies,
genes that encode GT’s have been identified as potential players
in the resistance mechanisms to several herbicides (Gaines et al.,
2014; Busi et al., 2018; Dücker et al., 2019).

Protection-Based Resistance
Protection-based herbicide resistance is conferred by endogenous
enzymes that counteract the damaging effect of reactive
molecules that were elicited by the action of an herbicide.
The most widely studied enzymes are those of the Halliwell-
Asada cycle, which are involved in the protection of plant
cells against oxidative damage (Délye, 2013), and include
superoxide dismutase, ascorbate peroxidase, and glutathione
reductase. Many herbicides elicit the overproduction of ROS
which can induce oxidation of proteins, DNA, and lipids,
resulting in cellular damage and causing cellular leakage. A plant
that can avoid or reduce the presence of ROS can minimize
the stress caused by herbicides. An Alopecurus myosuroides
population with multiple resistance to photosystem II (PSII)
and acetyl CoA carboxylase (ACCase) inhibitors exhibited an
enhanced activity of enzymes involved in the cellular protection
against toxic organic hydroperoxides (Cummins et al., 1999).
However, there are few documented cases of protection-based
resistance, and detailed information on its role as a secondary
mechanisms of resistance is limited. If individuals in a population
exhibit enhanced protection against ROS, then it would be
expected that reduction in efficacy of many herbicide classes
would be observed.
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HERBICIDE RESISTANCE IN Lolium spp.
AND THEIR MECHANISMS OF NTSR

Resistance to ACCase Inhibitors
Herbicides in the aryloxyphenoxy-propionate (FOP’s),
cyclohexanedione (DIM’s), and phenylpyrazoline (DEN)
chemical families (HRAC/WSSA Group 1) inhibit ACCase,
an enzyme in the biosynthetic pathway that produces fatty
acids, which are required for lipid production needed for cell
membranes (Hoppe, 1989). The binding site is a 400-amino acid
fragment of the carboxyltransferase (CT) domain in ACCase
(Nikolskaya et al., 1999; Takano et al., 2021). Herbicides in these
families are extremely effective for grass control and in general,
the chloroplastic ACCase from broadleaf plants is not sensitive
to ACCase inhibiting herbicides (Konishi and Sasaki, 1994). In
tolerant grasses, the herbicides are metabolized to non-toxic
products or have insensitive ACCase (Shimabukuro, 1985;
Duke and Kenyon, 1988; Zimmerlin and Durst, 1992). Some
of the herbicides are selective and can be used in cereal crops
while others are non-selective. For example, wheat (Triticum
aestivum) is tolerant to diclofop-methyl and clodinafop-
propargyl but not to fluazifop-p-butyl, quizalofop-p-ethyl,
clethodim, and sethoxydim (Shaner, 2014). In susceptible plants
and in wheat, diclofop-methyl is bioactivated by hydrolysis
to form the phytotoxic diclofop acid (Figure 4). In wheat,
the acid is detoxified by aryl hydroxylation catalyzed by a
P450 monooxygenase followed by glucosylation to produce a
non-toxic glucose conjugate (Shimabukuro, 1985).

Resistance to ACCase inhibitors in Lolium spp. is common
with reports from all continents except Antarctica. Diclofop
resistant L. rigidum was reported in Australia in 1982 (Heap and
Knight, 1982) and L. multiflorum in Oregon in 1987 (Stanger and
Appleby, 1989). Subsequently, resistance has been reported in
Lolium spp. to all herbicides in Group 1. Although, resistance to
clethodim is less common. Resistance to one of the herbicides in

this group does not necessarily lead to cross-resistance with other
members of the group. Target site resistance is due to a single
point mutation in the ACCase gene with at least five different
mutations reported with some mutations providing resistance to
all three families (Powles and Yu, 2010; Takano et al., 2021).

Non-target-site resistance to diclofop in L. rigidum was
reported in Australia in 1991 (Holtum et al., 1991). The
researchers did not believe that the 10% difference in metabolism
between resistant and susceptible plants was enough to produce
a 30-fold difference in sensitivity at the whole plant level. The
authors suggested that metabolism plus membrane repolarization
might be responsible for resistance. Other researchers also
proposed that membrane depolarization results from the
application of ACCase inhibitors and that resistant plants were
able to recover from this effect (Devine and Shimabukuro,
1994; Shimabukuro and Hoffer, 1997). However, the membrane
depolarization observed in plants treated with ACCase inhibitors
may be considered a secondary effect, as was determined the
target is the CT-domain of ACCase (Nikolskaya et al., 1999).
Further research on resistant Lolium spp. populations showed
that enhanced metabolism via P450 followed by conjugation by
GST enzymes were responsible for resistance (Preston et al., 1996;
Preston and Powles, 1998; Cocker et al., 2001; De Prado et al.,
2005). De Prado et al. (2005) also reported reduced absorption
of diclofop and greater epicuticular wax density in one resistant
biotype of L. rigidum.

Resistance to AHAS Inhibitors
There are five herbicide families (HRAC/WSSA Group 2)
that inhibit acetohydroxyacid synthase (AHAS), also referred
to as acetolactate synthase (ALS), the first enzyme in the
biosynthetic pathway for the production of the branched
chain amino acids, isoleucine, leucine, and valine. The families
are imidazolinones, pyrimidinyl-thiobenzoates, sulfonylamino-
carbonyl-triazolinone, sulfonylureas, and triazolo-pyrimidines.

FIGURE 4 | Diclofop-methyl metabolism in susceptible and resistant plants. Diclofop-methyl is demethylated, and converted to the active form of the herbicide. In
resistant plants, diclofop undergoes an aryl hydroxylation reaction likely mediated by P450, followed by a conjugation reaction to acidic aryl glycoside of diclofop. In
susceptible plants, diclofop is reversibly converted to a glucose ester conjugate (modified from Powles and Holtum, 1994).
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The herbicides are used in nearly all cropping systems with
major differences in their selectivity, spectrum of control, and
residual activity.

Similar to the ACCase inhibitor herbicides, resistance to
AHAS inhibitors in Lolium spp. has been reported on every
continent except Antarctica. Most of the resistant populations
were identified in cereal cropping systems with some identified
in other crops or in non-crop areas such as roadsides.
Initially, TSR was reported to be the most common resistance
mechanism with multiple different point mutations responsible
for resistance (Tranel and Wright, 2002). However, there
are many cases of NTSR AHAS resistance in Lolium spp.
reported to be due to enhanced metabolism. Further, TSR or
NTSR to one AHAS inhibiting herbicide does not necessarily
endow resistance to another herbicide even within the same
chemical family.

In studies conducted on L. rigidum, metabolism of
chlorsulfuron, a sulfonylurea herbicide, occurred more quickly
in the resistant biotype compared to the susceptible biotype
(Christopher et al., 1991, 1992). Using high-pressure liquid
chromatography (HPLC), the major metabolite co-eluted
was the glucose-conjugate metabolite previously identified
in chlorsulfuron tolerant wheat (Figure 5; Christopher et al.,
1991). In another study using a different chlorsulfuron resistant
L. rigidum biotype, the major metabolite identified was the
glucose conjugate of hydroxyl-chlorsulfuron (Cotterman and
Saari, 1992). In the resistant biotype, 50% of the chlorsulfuron
was metabolized within 2 h compared to 10% in the susceptible
biotype. The percentage of the glucose conjugate occurred more
rapidly and to a greater level in the resistant biotype compared
to the susceptible biotype. The researchers further showed that
chlorsulfuron metabolites were not AHAS inhibitors so the
differences in rate and level of chlorsulfuron metabolism were
responsible for resistance. In many other studies, resistance
due to enhanced metabolism resistance was based on indirect
evidence. In these studies, a cytochrome P450 inhibitor, such as
malathion (Preston et al., 1996; Yu et al., 2009a) or chlorpyrifos
(Liu M. et al., 2016), was applied. In these studies, resistance was
overcame with the addition of the P450 inhibitor, implicating
herbicide metabolism as the mechanism of resistance.

Resistance to Microtubule Assembly
Inhibitors
Herbicides that inhibit the assembly of microtubules do so by
binding to α or β-tubulin (HRAC/WSSA Group 3) leading to
loss of microtubule structure and function in the process of
mitosis. Microtubules are required for the spindle apparatus,
which separates sister chromatids during mitosis (Molin and
Khan, 1997). This loss of function prevents cell division and
cell wall formation. The most widely used herbicides with this
mechanism of action are in the dinitroaniline chemical family,
which includes the herbicide trifluralin.

Trifluralin resistant L. rigidum populations have been reported
in Australia. In most cases, the resistant populations were found
in cereal cropping systems. Several of the populations were
reported to be resistant to other herbicides. In some cases, the

mechanism of resistance was due to single point mutation in the
α-tubulin gene, where four unique point mutations have been
identified that provide resistance to trifluralin (Chen et al., 2018;
Chu et al., 2018; Fleet et al., 2018).

The only reports of trifluralin NTSR are from studies
conducted in populations collected in Western Australia, which
confirmed NTSR via enhanced metabolism (Chen et al., 2018).
Using thin-layer chromatography (TLC) and HPLC analyses,
more trifluralin was metabolized in a resistant population
compared to a susceptible population. Because metabolites
were not identified, the specific degradation pathway was not
determined. However, in previous studies with one of the
resistant populations, resistance was reversed when a P450
inhibitor was applied indicating that a P450 enzyme might
be involved with the enhanced metabolism (Busi et al., 2017).
In addition, in this study, some plants evolved both TSR and
NTSR to trifluralin.

Resistance to Photosystem II Inhibitors
Several different herbicide chemical classes including triazines,
triazinones, and ureas (HRAC/WSSA Groups 5 and 6) inhibit
Photosystem II (PSII). The PSII complex is located within
the thylakoid membranes of chloroplasts and contains two
proteins, D2 and D1 (Fuerst and Norman, 1991). Once a PSII
inhibiting herbicide binds, it blocks the transfer of electrons
from plastoquinone QA in D2 to plastoquinone QB in D1, which
prevents CO2 fixation and production of ATP and NADPH.
Blocking electron transport leads to production of ROS, which
destroy cell integrity.

The first documented case of herbicide resistance was in the
dicotyledonous species common groundsel (Senecio vulgaris L.)
to the PSII inhibitor simazine, a triazine herbicide (Ryan, 1970).
Most often, the mechanism of resistance to PSII inhibitors is
reported to be a mutation in the D1 protein in the PSII complex.
However, there are some cases where resistance is NTS. In
these cases, enhanced metabolism is reported to be responsible
for resistance. Photosystem II inhibitor resistant L. rigidum
populations have been reported in crop and non-crop sites in
Australia, Israel, and Spain and L. multiflorum populations in
United Kingdom cereal crops (Heap, 2020).

Metribuzin (HRAC/WSSA Group 5) is in the triazinone
chemical family of PSII inhibitors. Metribuzin controls both grass
and broadleaf weeds. In some tolerant species such as wheat,
metribuzin is detoxified to polar N-glucoside metabolites (Devlin
et al., 1987). Metribuzin resistance in a multiple-resistant L.
rigidum population in Australia was due to enhanced metabolism
(Ma et al., 2020). In a time course study, unidentified polar
metabolites of metribuzin were found in both susceptible and
resistant plants at each time point but were greater in the
resistant plans (Busi et al., 2017). Based on the results of a dose
response study with the addition of a P450 inhibitor, which
reversed resistance, the authors suggested that the mechanism of
resistance likely involved cytochrome P450 monooxygenases.

Chlorotoluron (HRAC/WSSA Group 5) is in the substituted
urea chemical family of PSII inhibiting herbicides but has a
different binding behavior compared to other herbicide classes
in Group 5 (Shaner, 2014). Chlorotoluron is used to control
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FIGURE 5 | Chlorsulfuron metabolism in Lolium rigidum. The herbicide may be hydroxylated followed by conjugation with glucose, or cleaved, producing
sulfonamide and triazine amide (adapted Cotterman and Saari, 1992).

grass and broadleaf weeds in cereals. In tolerant plants, the major
degradation is through N-dealkylation and oxidation of the ring-
methyl group with conjugation to glucose (Gonneau et al., 1988).

Similar studies on the mechanism of chlorotoluron resistance
in L. rigidum populations were conducted in Australia (Burnet
et al., 1993; Preston and Powles, 1996) and Spain (De Prado
et al., 1997). Based on HPLC analysis, Burnet et al. (1993)
found that resistant plants metabolized chlorotoluron more
quickly than the susceptible plants. De Prado et al. (1997)
used TLC and reported greater metabolism at 48 hr in the
resistant versus susceptible plants. Both groups conducted
studies using monooxygenase inhibitors to overcome resistance,
which supported the premise that cytochrome P450 enzymes
could be involved in degradation. In a follow up study on
one of the resistant Australian populations, chlorotoluron was
metabolized via two paths, which resulted in either ring-methyl
hydroxylation or N-demethylation (Preston and Powles, 1997).
In light, metabolism via ring-methyl hydroxylation increased
significantly while N-demethylation did not. The products of
ring-methyl hydroxylation were conjugated to glucose. The
results indicated that the ring-hydroxylation was the major
detoxification pathway and that N-demethylation was less
important. The metabolism via both pathways was greater
in chlorotoluron resistant plants than in susceptible plants.
The authors suggest that two different enzymes are involved
with enhanced metabolism of the resistant biotype because
of the differences in the induction of the two pathways in
response to light.

Resistance to Glyphosate
Glyphosate [N-(phosphonomethyl)glycine, HRAC/WSSA Group
9] is the most widely used herbicide in the world in agricultural
and non-agricultural areas. It inhibits EPSPS, preventing
biosynthesis of aromatic amino acids for plant metabolism
(Shaner, 2014). Glyphosate uptake by plant cells may be active
or passive, with the active uptake being facilitated by membrane-
bound phosphate transporters (Hetherington et al., 1998). Several
properties make glyphosate a unique and important tool: it
is a non-selective, systemic, slow-acting, post-emergence, and

relatively non-expensive herbicide (Duke et al., 2018). Glyphosate
is hydrophilic (log Kow at pH 7 = of −3.1), a weak acid, and
exhibits slow metabolic degradation in most plants or not at all,
which makes it possible for glyphosate to be transported through
the phloem and the xylem and move to meristems where amino
acid synthesis is most required (Duke et al., 2018). In 1996, L.
rigidum was the first species to have a confirmed glyphosate
resistant population (Pratley et al., 1996).

Most cases of NTSR to glyphosate in Lolium spp. are
due to reduced translocation, with more than 20 reports to
date in several countries, including Australia, Brazil, Chile,
France, Italy, Japan, New Zealand, Portugal, Spain, and the
United States (Mississippi and Oregon) (Ferreira et al., 2006;
Michitte et al., 2007; Perez-Jones et al., 2007; Yu et al., 2007;
Nandula et al., 2008; Ge et al., 2012; Ghanizadeh et al., 2015b;
Fernández-Moreno et al., 2017; Kurata et al., 2018). Some
authors also reported lower spray retention and foliar uptake
from the abaxial leaf surface, along with reduced translocation
(Michitte et al., 2007).

Reduced glyphosate translocation in resistant plants keeps the
herbicide in the source leaves, away from the meristematic tissue,
enabling survival after treatment (Kurata et al., 2018). Susceptible
biotypes commonly translocate glyphosate out of the treated
leaves into non-treated leaves, meristematic tissues, stems and
roots (Lorraine-Colwill et al., 2002; Wakelin et al., 2004; Perez-
Jones et al., 2007; Yu et al., 2009a). Different populations exhibit
a wide range of resistance levels, ranging from three- to 25-fold
compared to susceptible populations (Ghanizadeh et al., 2015b;
Kurata et al., 2018).

Reduced glyphosate movement in glyphosate resistant plants
may occur via four mechanisms: (i) modification in a putative
phosphate transporter located in the plasma membrane, (ii)
an active transporter pumps glyphosate into the vacuole, (iii)
glyphosate pumped out of the cell into the apoplast through
an active transporter, (iv) glyphosate pumped out of the
chloroplast by a transporter in the chloroplast envelope (Shaner,
2009). However, to date, these mechanisms remain hypothetical,
and no transporter has been identified to confer glyphosate
resistance in weeds.
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A modification in a phosphate carrier protein has been
proposed as a resistance mechanism to glyphosate (Shaner,
2009; Roso and Vidal, 2010). It has been shown that glyphosate
does not readily move across a laboratory made semi-permeable
membrane (Takano et al., 2019) and cellular uptake may be
inhibited in the presence of phosphate (Hetherington et al., 1998).
These results provide evidence that glyphosate is taken up by
the cell through a phosphate transporter. Therefore, a putative
modification in such a transporter would keep glyphosate out of
the cell. However, a possible modification in the carrier has not
been found to date in Lolium spp.

The second possible mechanism, a transporter pumping
glyphosate into the vacuole has been the hypothesis with the
most evidence found to date. In a study using 31P nuclear
magnetic resonance, vacuolar sequestration of glyphosate in
populations of Lolium spp. from four different countries
was strongly correlated with reduced translocation, and thus,
reduced entry of glyphosate into the phloem (Ge et al., 2012).
The authors concluded that glyphosate sequestration into the
vacuole appeared to be unidirectional, meaning that once inside
the vacuole, efflux through the tonoplast does not seem to
be significant. The authors hypothesized that glyphosate is
transported into the vacuole through an unidentified tonoplast-
bound ABC transporter (Ge et al., 2012; Sammons and Gaines,
2014). To date, only a few studies have investigated the vacuolar
sequestration and its association with reduced translocation of
glyphosate. However, a few candidate genes have been identified.
Glyphosate movement across the tonoplast is reduced under
low temperatures (Ge et al., 2011). Studies in Lolium spp. have
used low temperature treatments after glyphosate application
as indirect evidence that glyphosate was sequestered into the
vacuole (Vila-Aiub et al., 2013; Ghanizadeh et al., 2015a). Lolium
spp. populations evaluated in other studies had reduced herbicide
translocation as the mechanism of resistance when grown at
ambient temperatures (Lorraine-Colwill et al., 2002) of 26/12◦C
(Ghanizadeh et al., 2015b). When grown at 9◦C after glyphosate
application, the resistant population responses were similar to
the susceptible population. In comparison, a glyphosate resistant
L. multiflorum with an EPSPS Pro106Ser amino acid substitution
was not made sensitive to glyphosate with cold acclimation
(Collavo and Sattin, 2012; Sammons and Gaines, 2014). However,
since low temperature is also the same method used to identify
possible metabolism based resistance, more research would need
to be done to rule out this hypothesis and elucidate the effects of
temperature on the vacuolar sequestration of glyphosate.

Although most studies of resistant populations with reduced
translocation did not further investigate the underlying genetic
basis of the NTSR, it is very likely that they also had
vacuolar sequestration, as enhanced glyphosate metabolism has
rarely been identified to date (however, see Pan et al., 2019;
McElroy and Hall, 2020).

Reduced glyphosate translocation generally results in higher
resistance levels than alterations in the EPSPS enzyme (Preston
and Wakelin, 2008; Bostamam et al., 2012). It has been
suggested that two or more mechanisms of resistance in the
same population, can result in a higher level of resistance
(Ghanizadeh et al., 2015b). As Lolium spp. are obligate

outcrossing species, different mechanisms of resistance and
resistance to different herbicides may accumulate due to cross-
pollination (Yu et al., 2007).

No evidence of glyphosate being pumped out of the cell
into the apoplast, nor being pumped out of the chloroplast
envelope has been found to date. Glyphosate transport through
membranes has been observed as being unidirectional by
importers (Ge et al., 2013). Once glyphosate enters the
chloroplast, it has been assumed that it cannot return to the
cytoplasm (Sammons and Gaines, 2014). An upregulated gene
was found to be related to ABC transporter A family member
7 (ABCA7) in a NTSR glyphosate resistant L. multiflorum
population (Cechin et al., 2020), which its subcellular
location is in the plasma membrane in Arabidopsis thaliana
(Benschop et al., 2007). Further validation studies could help
determine if the identified transporter gene is responsible for
glyphosate resistance.

Enhanced glyphosate metabolism has not been found to be
a resistance mechanism in Lolium spp.; however, Fernández-
Moreno et al. (2017) found that susceptible and resistant
populations of L. perenne and L. multiflorum metabolized
glyphosate to aminomethylphosphonic acid (AMPA) and
glyoxylate. The authors concluded that the final concentrations
of the metabolites were small and unlikely to be biologically
meaningful. AMPA is a very weakly phytotoxic compound
(Gaines et al., 2020) and glyoxylate is a non-toxic compound
(Rueppel et al., 1977), therefore rapid degradation to those
substances should provide glyphosate resistance. In a RNA-seq
study comparing a susceptible and a NTSR population, the
candidate gene list included genes related to glycosyltransferases
(Cechin et al., 2020). Glycosyltransferases are important for crop
tolerance; however, their role in herbicide resistance in weeds
is still not well understood and glucosylation of glyphosate as
a mechanism of NTSR has yet to be identified (Rigon et al.,
2020). Future studies with reverse genetics to evaluate candidate
genes are required.

Resistance to Glufosinate
Glufosinate (HRAC/WSSA Group 10), the only member of this
herbicide group, controls weeds by inhibiting the glutamine
synthetases, key enzymes in the nitrogen assimilation in plants.
Inhibition of glutamine synthetase reduces the amount of amino
donors for the glycolate pathway, breaking the transamination
reaction of glyoxylate to glycine in the photorespiratory cycle
(Wild and Wendler, 1993). This imbalance leads to accumulation
of glyoxylate, which is a strong inhibitor of the ribulose-1,5-
bisphosphate carboxylase activase, necessary for the proper
functioning of ribulose-1,5 bisphosphate carboxylase/oxygenase.
Consequently, photosynthesis is inhibited (Wendler et al., 1992;
Wild and Wendler, 1993; González-Moro et al., 1997), causing
accumulation of ROS and cell death (reviewed by Hess, 2000, and
more recently by Takano and Dayan, 2020).

There are, overall, a limited number of glufosinate resistant
weed populations, likely associated with the limited use of
this herbicide until recent years. More recently, however,
particularly because of patent expirations and increased adoption
of glufosinate resistant crops, the number of resistant populations
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has increased and this trend is likely to continue. Glufosinate
resistance in L. multiflorum was first identified in 2009 in
hazelnut (Corylus avellana) orchards in Oregon, where resistant
populations exhibited up to 2.7-fold reduced response to
glufosinate compared to a known susceptible population (Avila-
Garcia and Mallory-Smith, 2011; Avila-Garcia et al., 2012). Later,
research by Brunharo et al. (2019) indicated that there are
multiple mechanisms of glufosinate resistance in the Oregon
populations. The authors studied two resistant populations,
one of them exhibited enhanced glufosinate metabolism, and
the other did not. No differences in absorption, translocation
of glufosinate, or differential gene expression of three GS
isoforms studied were observed. The metabolites produced
by glufosinate resistant L. multiflorum were not identified.
Several plant species have been identified that may metabolize
glufosinate, including tobacco and carrot (Dröge et al., 1992),
producing several stable and unstable compounds with reduced
herbicidal activity (Droge-Laser et al., 1994). Current research is
underway to identify the genetic basis of glufosinate resistance
in L. multiflorum.

Resistance to Very-Long Chain Fatty
Acid Inhibitors
Very-long chain fatty acid (HRAC/WSSA Group 15) inhibitors
(e.g., flufenacet, metolachlor, and pyroxasulfone) prevent
biosynthesis of very-long chain fatty acid although a specific
target enzyme or enzymes within the pathway have not been
identified. Trenkamp et al. (2004) reported that flufenacet
inhibits multiple elongases in the pathway.

Rapid metabolism of flufenacet via glutathione conjugation
is found in tolerant crops with flufenacet-glutathione being the
first major metabolite (Bieseler et al., 1997). Activity rates of GST
were greater in maize, a tolerant crop, than in sensitive species,
supporting the role of this enzyme in the breakdown of flufenacet
in plants (Kreuz et al., 1989).

Resistance to flufenacet has been reported in L. multiflorum
in France and United States (Gersdorf, 2009; Rauch et al., 2010;
Liu M. et al., 2016; Bobadilla, 2019; Dücker et al., 2019). Most
of the resistant populations were found in either cereal or grass
seed cropping systems and were resistant to other herbicides (i.e.,
exhibited cross- and multiple-resistance). Liu M. et al. (2016)
suggested that resistance in populations from Oregon was based
on enhanced metabolism.

Pyroxasulfone resistance has been artificially created in L.
rigidum populations under laboratory conditions after recurrent
low-rate herbicide (Busi et al., 2012). These populations were
subjected to three cycles of an increasing rate of pyroxasulfone,
and the resistance phenotype has been attributed to an enhanced
rate of herbicide metabolism (Busi et al., 2018). A field population
of L. rigidum evolved pyroxasulfone resistance in Australia
(Brunton et al., 2019).

Studies conducted by Dücker et al. (2019) found that
flufenacet resistance in L. multiflorum populations from France,
the United Kingdom, and Washington State, United States, was
due to enhanced metabolism. Flufenacet was degraded more
quickly in resistant plants than in susceptible plants with some
variation among the susceptible and resistant tested populations

(Figure 6). In sensitive populations at 22◦C, times for 50%
degradation (D50) of flufenacet were 7 to 12 h whereas in the
resistant populations the D50s were 0.09 to 0.41 h. At 12◦C, the
D50s were 18.5 to 46 h for the susceptible populations and 1.3 h
for the resistant populations. A flufenacet-glutathione conjugate
was found to be the first metabolite in the degradation pathway.
GST activity was greater in the resistant plants than in susceptible
populations. Two additional metabolites were identified in the
resistant plants during the time course study. At 24 h, metabolites
that were likely the result of secondary conjugation with malonyl
or glycosyl were detected.

Resistance to Photosystem I Electron
Diverters
Paraquat and diquat are non-selective herbicides (WSSA/HRAC
Group 22) that function as preferential electron acceptors in
the Photosystem I (PSI), where electrons from ferredoxin are
diverted from their regular path, producing ROS that cause lipid
peroxidation and tissue necrosis (Summers, 1980). Throughout
this section, the focus will be given on paraquat, as more in-depth
studies on the NTSR mechanisms for this herbicide are available.

Paraquat cellular uptake is facilitated by plasma membrane-
bound polyamine transporters (Hart et al., 1992), likely because
of the similar chemical structure the herbicide shares with these
natural substrates (Fujita and Shinozaki, 2014). Once the plasma
membrane barrier is overcome, paraquat must reach its target
site located in the chloroplast, more specifically in the thylakoid
membrane. It is unclear whether paraquat transport through
the chloroplast’s double-membrane, particularly the inner, less-
permeable membrane, is passive or active. Results from Li et al.
(2013) suggest that an L-type amino acid (LAT) transporter
localized to the Golgi apparatus facilitates paraquat movement
into the chloroplast. LAT transporters are involved in the
intracellular movement of LAT, polyamines, and organocations
in mammals (Jack et al., 2000), and the authors suggested
that LAT transporters facilitate the movement of paraquat to
the chloroplast.

Because paraquat does not have a target site enzyme associated
with its mechanism of action, resistance to paraquat has always
been associated with NTS. Resistance to paraquat has been
proposed to be either because of vacuolar sequestration of
the herbicide or enhanced protection against ROS, where the
former typically confers higher resistance levels. Although there
are many reports of differential response to PSI inhibitors in
populations of Lolium spp. (Faulkner, 1974; Harvey et al., 1978),
the first field-selected case of PSI resistance was not identified
until 2002 (Yu et al., 2004).

Lolium rigidum was the first member of the Lolium spp.
complex to exhibit PSI inhibitor resistance (Yu et al., 2004) from
a vineyard in South Africa. The resistant population exhibited
30-fold reduced translocation compared to a known susceptible
population. The authors suggested that the mechanism of
paraquat resistance involved enhanced vacuolar sequestration
of the herbicide, supported by the fact that resistance could
be reversed by plant incubation under low temperatures, as is
observed for paraquat resistance in other species (Purba et al.,
1995). Later inheritance studies in other populations suggested
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FIGURE 6 | Flufenacet metabolism in Lolium spp. Herbicide conjugation is initially performed by GST’s. The conjugate molecule is hydrolyzed and processed by
peptidases, which will eventually be further processed in the Phase III of the metabolism pathways (adapted from Dücker et al., 2019).

that a major nuclear gene confers paraquat resistance, as the
phenotype followed Mendelian segregation (Yu et al., 2009b).

Paraquat resistance in L. multiflorum was first observed in
2015, in a population from a prune orchard in California
(Brunharo and Hanson, 2017). No differences were observed
in paraquat metabolism or absorption when the resistant
and susceptible biotypes were compared when grown at
30/24◦C (Brunharo and Hanson, 2019). However, significant
differences in paraquat translocation were detected, where
the resistant biotype translocated less paraquat than the
susceptible in a light-manipulated environment. After paraquat
application, the resistant biotype exhibited a transient inhibition
of photosynthesis, suggesting a mechanism of response to
the herbicide once inside the plant cells. Furthermore, at
low paraquat doses, there was no damage observed to
thylakoid membranes of treated plants, suggesting a constitutive
mechanism to cope with the herbicide, whereas at higher
paraquat doses significant damage was observed. The authors
concluded that paraquat resistance was due to vacuolar
sequestration of the herbicide, because pre-treatment of leaf
tissues with a tonoplast-bound polyamine transport inhibitors
reversed the resistance. When this population was acclimated
to low temperatures 16/10◦C, paraquat resistance was no longer
observed (Brunharo and Hanson, 2019). This population also
exhibited an enhanced ability to detoxify ROS. To the best of
our knowledge, there are no reports of PSI resistance in L.
perenne. The physiological mechanisms involved in the paraquat
resistance reversal under low temperatures have not been
elucidated. However, one could hypothesize that, if the resistance
mechanism depends on enzyme kinetics of transport proteins,
then low temperatures will reduce the rate of enzyme reactions.

STRATEGIES TO UNCOVER NTSR

Scientists have acquired a plethora of information on target-site
resistance. The large amount of information on TSR may be
attributed to the fact that, when herbicide resistance is believed
to have evolved in a weed population, looking for changes in
the target site can be successfully achieved relatively quickly in
the laboratory today. Basic understanding of NTSR mechanisms,
conversely, is still in its early stages of discovery, and limited
advances on the genetic basis have been achieved to date (Yu and
Powles, 2014; Wang et al., 2017; Oliveira et al., 2018; Van Etten
et al., 2020). It is believed that recurrent selection by low herbicide
dosages plays a major role in the stacking of multiple small-
effect alleles conferring NTSR (Délye, 2013), and the interactions
among the resistance alleles may play an important role in the
resistance level (Renton et al., 2011).

Although less often acknowledged in the literature, stresses
caused by sub-lethal herbicide doses may play an important role
in the evolution of NTSR (as reviewed by Dyer, 2018) by inducing
systemic stress responses that lead to genetic and epigenetic
changes upon which selection can act (Ram and Hadany, 2014;
Hu et al., 2016; Kim et al., 2017). These epigenetic modifications
driven by environmental cues during the plant life cycle can be
inherited and remain stable for as long as the stressors remain
(Cubas et al., 1999; Hsieh et al., 2016).

Identifying the underlying genetic basis of NTSR is a
challenging task that takes time and resources. To date, several
examples of these attempts are available in the literature,
and scientists have been able to identify candidate genes
efficiently (see discussion below). Further validation of candidate
alleles via functional analysis are rare; however, these are the

Frontiers in Plant Science | www.frontiersin.org 10 January 2021 | Volume 11 | Article 609209

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-609209 January 18, 2021 Time: 17:38 # 11

Suzukawa et al. Lolium spp. Review

ultimate approaches necessary to relate the genotype with the
resistance phenotype.

High-throughput sequencing technologies, associated with
the exponential cost reduction of these technologies, have
enabled researchers to acquire massive amounts of data, not
only for model species (e.g., A. thaliana) but also for non-
model organisms, as is the case of Lolium spp. This enormous
data quantity makes possible genome-wide interrogations of
causal genetic features associated with traits of interest. Although
such interrogations are common place in other disciplines,
limited research has explored the underlying basis of NTSR in
weed populations. Different methods have different benefits and
drawbacks, and existing knowledge of the target organism will aid
in the choice of the most appropriate approach to study NTSR.

Transcript expression quantification has been used in the field
of weed science to investigate the mechanisms of NTSR. Prior
information on the potential enzymes and herbicide metabolites
involved in the NTSR are essential when low-throughput
methods are adopted to study the resistance mechanisms (e.g.,
real-time quantitative polymerase chain reaction), as these
approaches are very laborious and time consuming (Iwakami
et al., 2014a,b; Guo et al., 2019). When limited information
about the physiological and biochemical aspects of a resistance
phenotype is available, high-throughput sequencing approaches
(i.e., RNseq) may be a better option. Careful consideration of
the experimental design plays an important role in the success
of the RNA-seq analysis (Giacomini et al., 2018). Given the
limited genomics resources currently available in most weed
species, a de novo reference transcriptome assembly is the first
step in a differential expression analysis (Gaines et al., 2014;
Keith et al., 2017; Zhao et al., 2017). Another consideration
when designing RNA-seq studies is the genetic background
control of the experimental units, as it might determine the
number of differentially expressed contigs identified (as reviewed
by Giacomini et al., 2018). It is recommended that crosses
be performed before final RNA extraction, so that researchers
may take advantage of recombination and reduce the number
of candidate genes. Following quantification of differentially
expressed contigs, further analysis is necessary to identify
candidate genes, and typically require a prior physiological and
biochemical knowledge of the phenotype. By filtering contigs
unlikely to be involved in pyroxsulam resistance in Lolium
spp. (Duhoux et al., 2015), a list of differentially expressed
genes was reduced from > 10,000 to four candidate genes.
Similarly, Zhao et al. (2017) focused on the validation of 31
candidate genes from a pool of > 11,000 differentially expressed
contigs in Alopecurus aequalis. Upon identification of candidate
genes, functional analysis of the differentially expressed genes
is necessary to confirm involvement in the mechanisms of
resistance. Functional analysis can be achieved by performing
knockout, knockdown, or upregulation of gene constructs in
model plant organisms (however, see Mellado-Sánchez et al.,
2020). Inherently, RNA-seq experiments are an exploratory
approach, especially to design new hypotheses for a given
phenotype, and should not be used as a stand-alone means to
answer biological questions regarding NTSR.

Another strategy to identify NTSR is to look for signatures
of selection in the weed genome. The idea behind this

suite of techniques is to use population genomics approaches
to identify loci under selection using a set of statistical
tests. Because selection will shape the frequency of the
alleles under selection, markers with unusual allele frequencies
within and among populations may be compared using
genetic markers. A number of approaches to acquire genetic
markers have been used (Paris et al., 2010), with the
bottom line to compare the distribution of marker data to
a distribution of markers assumed to be under a neutral
model of evolution. Although most types of markers may
be used to perform such an analysis, single nucleotide
polymorphisms (SNP’s) have been preferred as thousands of
genome wide markers may be acquired with next-generation
sequencing instruments. Genome-wide analysis provides the
benefit of discovering new loci involved in the resistance traits.
Many software programs have been developed to associate
genotype with phenotype (reviewed by Hoban et al., 2016);
however, a recent review of the outlier analysis usage between
2010 and 2016 (Ahrens et al., 2018) indicated ARLEQUIN
was the most commonly program used for this purpose
(Excoffier et al., 2005).

Outlier approaches are prone to a number of biases (e.g.,
false positives, confounded effects due to population structure,
spatial correlation; reviewed by Hoban et al. (2016), therefore
combining multiple approaches are typically beneficial to
validate candidate loci. Examples of these approaches have
been limited in the weed science literature, however are not
absent. Kreiner et al. (2019) evaluated genetic differentiation
using 100-kb sliding windows between resistant and susceptible
A. tuberculatus, and found evidence that regions containing
the EPSPS coding region were highly differentiated and
likely involved in the resistance phenotype. Van Etten et al.
(2020) studied eight populations of glyphosate-resistant and
-susceptible Ipomoea purpurea from the Southeastern and
Midwest United States that did not exhibit TSR. These authors
adopted SNP outlier approaches to survival and resistance
level data using and identified 42 to 83 loci (depending on
the approach utilized) potentially involved in the glyphosate
resistance trait. Following an exome resequencing step and
outlier analysis, the authors were able to identify five genomic
regions under positive selection that contained enriched genes
in the cytochrome P450, ABC transporters, glycosyltransferases,
and GST families. Although glyphosate metabolism has rarely
been involved in the resistance mechanisms, more research
is needed to confirm the involvement of metabolizing
enzymes in I. purpurea. Similar approaches could be
successful if implemented to uncover NTSR mechanisms in
Lolium spp.

Genome-wide association studies (GWAS) rely on statistical
models to find correlations between an observed phenotype
and the genotype (reviewed by Leon et al., 2020). With high-
throughput sequencing technologies, thousands to millions of
SNP’s may be identified and can be used for association studies.
These associations may be prone to high false positive rates
if the statistical method chosen is not adequate to correct
for confounding factors inherent from the study populations,
such as population structure and unequal relatedness (Zhang
et al., 2010). Several methods have been established to reduce
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false positive errors (Segura et al., 2012; Liu X. et al., 2016),
and GWAS has been successfully implemented to identify the
underlying genetic basis of traits in plants (Huang and Han,
2014). Although the availability of a reference genome may
assist in the functional analysis of genomic regions, GWAS
may be performed de novo (without the aid of a reference
genome) (Voichek and Weigel, 2020). Limited weed science
literature is available where GWAS was used to detect NTSR.
Kreiner et al. (2020) conducted a GWAS in glyphosate-resistant
A. tuberculatus that exhibited increased EPSPS duplication in
the majority of the populations tested and, as expected, found
that the genomic regions containing the EPSPS coding sequences
were related to the resistance phenotype. The authors also
found > 100 genes across the weed genome involved in the
glyphosate resistance, and were identified as involved in stress-
response and NTSR.

Regardless of the method employed to identify SNP’s
throughout the weed genome, it is crucial that a thorough
analysis is performed before the start of any experiment. An
important consideration is the genome size. Analysis that rely on
genome-wide SNP’s are typically performed with the assistance of
restriction enzymes, which vary in the frequency that they cleave
their recognition site. If a rate cutter restriction enzyme is chosen
for a genome the size of Lolium spp. (approximately 2 Gb), it is
very unlikely that the identified SNP’s will be physically linked
(i.e., in linkage disequilibrium) with the causal mutation. Another
consideration is the approach to construct the plant population
that will be used for the analysis (reviewed by Morrell et al., 2012),
which will also determine the likelihood of success in determining
the genomic regions involved in the NTSR.

CONCLUSION AND FUTURE
DIRECTIONS

Lolium spp. exhibit an astonishing potential to evolve herbicide
resistance, likely due to its high genetic diversity and ability
to exchange genetic material due to gene flow (Matzrafi et al.,
in press). Lolium spp. populations around the world have evolved

NTSR to many herbicides. Because NTSR may be non-specific,
populations may exhibit unknown herbicide resistance patterns,
as resistance occurs to herbicides to which populations have
never been exposed. NTSR poses a challenge to sustainable
agricultural production systems, and is an ongoing issue that
needs a collaborative approach to be minimized.

Non-target-site resistance research has elucidated fascinating
aspects of how Lolium spp. evolve herbicide resistance, and
adopted creative approaches to uncover the details of how
plants manage to survive lethal doses of herbicides. Most
of the efforts have been to describe the physiological and
biochemical alterations that take place at the plant and
cellular level (e.g., reduced herbicide translocation, herbicide
metabolism). The underlying genetic bases of the phenotypes
remain largely unknown. For instance, it is currently unknown
which genes are involved in the vacuolar sequestration of
paraquat in L. multiflorum. It is also unknown how these
herbicide resistance genes arise in the populations (see modes
of convergent adaptation in Lee and Coop, 2017). Information
on the underlying genetic basis of the resistance mechanism
has not only basic, but also applied applications. For instance,
genetic markers may be developed to identify seed lots
contaminated with herbicide resistant Lolium spp. seed, or
field diagnostics to quickly identify herbicide susceptibility
before growers treat an infested field. Policymakers may use
information on how resistance genes arise in the population
(i.e., gene flow, standing genetic variation, or new mutations;
see Lee and Coop, 2017) to design regulations to prevent
gene flow. Advancing our knowledge on NTSR resistance in
Lolium spp. will require efforts of multidisciplinary teams that
will likely include weed scientists, population geneticists, plant
physiologists, biochemists, stakeholders, and funding agencies.
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